Energy Storage Control with Aging Limitation

Pierre Haessig*, Hamid Ben Ahmed*, Bernard Multon*

* CentraleSupélec – IETR, * ENS Rennes — SATIE

SESO, ENPC, Champs-sur-Marne, May 31, 2017

http://pierreh.eu

pierre.haessig@centralesupelec.fr

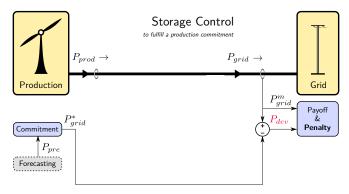
(based on PowerTech 2015 article)

Outline of the presentation

1. Introduction to aging control

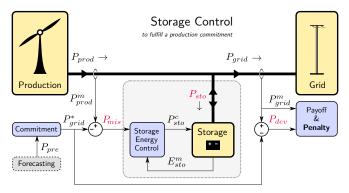
2. ESS control with aging limitation

3. Control evaluation on a simulation


4. Conclusion

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion


Why an Energy Storage System (ESS) ? example usage: a wind-storage system

Objective: the wind farm must respect a day-ahead commitment.

Why an Energy Storage System (ESS) ? example usage: a wind-storage system

Objective: the wind farm must respect a day-ahead commitment.

 \rightarrow an ESS is used to mitigate commitment errors:

$$P_{dev} = P_{mis} - P_{sto}$$

The issue of storage aging

Technological problem: ESS (electrochemical) can only perform a **limited number of charge/discharge cycles** over its lifetime.

To avoid the high cost of premature replacements, aging should be taken into account:

- in the system design: aging-aware ESS sizing
- $\circ\,$ in the energy management: aging-aware ESS control

The issue of storage aging

Technological problem: ESS (electrochemical) can only perform a **limited number of charge/discharge cycles** over its lifetime.

To avoid the high cost of premature replacements, aging should be taken into account:

- in the system design: aging-aware ESS sizing
- $\circ\,$ in the energy management: aging-aware ESS control

Main question being addressed How to embed the limitation of storage aging, as a strict constraint,

in the energy management optimization ?

aging constraint: $N_{cycl}(T_{life}) \le N_{life}$ example: $T_{life} = 20$ years, $N_{life} = 3000$ cycles

Modeling battery aging: some background

Battery aging is a complex physical (chemical/thermal/mechanical) process. It usually split into two:

- **cycling** aging: happens when charging/discharging.
- **calendar** aging: happens *even* at rest (\neq only at rest).

Modeling battery aging: some background

Battery aging is a complex physical (chemical/thermal/mechanical) process. It usually split into two:

- **cycling** aging: happens when charging/discharging.
- **calendar** aging: happens *even* at rest (\neq *only* at rest).

Modeling for control purpose:

- a physics-based model would be unusable: high dimension + unknown parameter fitting.
- use instead empirical models, fitted from manufacturer's datasheet ("aging curves").

Modeling battery aging: some background

Battery aging is a complex physical (chemical/thermal/mechanical) process. It usually split into two:

- **cycling** aging: happens when charging/discharging.
- **calendar** aging: happens *even* at rest (\neq *only* at rest).

Modeling for control purpose:

- a physics-based model would be unusable: high dimension + unknown parameter fitting.
- use instead empirical models, fitted from manufacturer's datasheet ("aging curves").

Basis of this work on aging-aware energy management

A simple empirical model of cycling aging: "energy counting"

Modeling cycling aging

Cycling aging is modeled using the energy counting method:

$$N_{cycl}(t) = \frac{1}{2E_{rated}} \int_{0}^{t} |P_{sto}| dt$$

exchanged energy

 $N_{cycl}(t)$ is the number of equivalent full cycles at each instant.

Much simpler than counting actual cycles!

Modeling cycling aging

Cycling aging is modeled using the energy counting method:

$$N_{cycl}(t) = rac{1}{2E_{rated}} \int_{0}^{t} |P_{sto}| dt$$

exchanged energy

 $N_{cycl}(t)$ is the number of equivalent full cycles at each instant.

Much simpler than counting actual cycles!

 \rightarrow aging constraint can be re-expressed as a constraint on the **lifetime average** of $|P_{sto}|$:

$$\langle |P_{sto}|
angle_{T_{life}} \leq P_{exch}$$
 with $P_{exch} = rac{2E_{rated}N_{life}}{T_{life}}$

ex:
$$E_{rated} = 1 \text{ h}$$
, $N_{life} = 3000$, $T_{life} = 20 \text{ yr} \rightarrow P_{exch} = 0.034 \text{ pu}$

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Optimal energy management

ESS energy management is treated as an **optimization problem**: minimize *J*, the *average* of an instant penalty *cost*:

$$J = \frac{1}{K} \mathbb{E} \left\{ \sum_{k=0}^{K-1} cost(k) \right\} \text{ with } K \to \infty$$

with $cost(k) = \max \left\{ 0, |P_{dev}(k)| - P_{tol} \right\}$

Optimal energy management

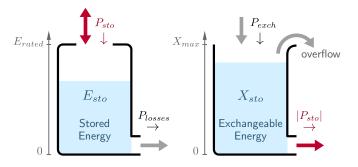
ESS energy management is treated as an **optimization problem**: minimize *J*, the *average* of an instant penalty *cost*:

$$J = rac{1}{K} \mathbb{E} \left\{ \sum_{k=0}^{K-1} cost(k)
ight\} \quad ext{with } K o \infty$$

with
$$\textit{cost}(k) = \max\left\{0, |P_{\textit{dev}}(k)| - P_{\textit{tol}}
ight\}$$

... while respecting the aging constraint:

$$\langle |P_{sto}|
angle_{T_{life}} \leq P_{exch}$$


Algorithmic difficulty of this optimization

a constraint on a T_{life} horizon (~10 years) is not manageable!

 \rightarrow a reformulation is needed

Reformulation of the aging constraints

To deal with cycling aging on a "reasonable" horizon, I introduce a new state variable: X_{sto} a buffer of "exchangeable energy":

 $X_{sto}(k+1) = \operatorname{sat} \{ X_{sto}(k) + (P_{exch} - |P_{sto}(k)|) \Delta_t \}$ similarity with the dynamics of the storage $E_{sto}(k+1) = E_{sto}(k) + P_{sto}(k) \Delta_t$

Reformulation of the aging constraints: properties

Aging limitation is guaranteed

Keeping the "exchangeable energy" buffer non empty $(X_{sto} \ge 0)$ is a sufficient condition to satisfy the aging constraint $\langle |P_{sto}| \rangle_{T_{life}} \le P_{exch}$

Reformulation of the aging constraints: properties

Aging limitation is guaranteed

Keeping the "exchangeable energy" buffer non empty $(X_{sto} \ge 0)$ is a sufficient condition to satisfy the aging constraint $\langle |P_{sto}| \rangle_{T_{life}} \le P_{exch}$

Always feasible solution

Constraint on the state $X_{sto} \ge 0$ can be transferred to the control variable:

$$|P_{sto}(k)| \leq P_{exch} + X_{sto}(k)/\Delta_t$$

which is always feasible.

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Validation test case

Input data for the simulation:

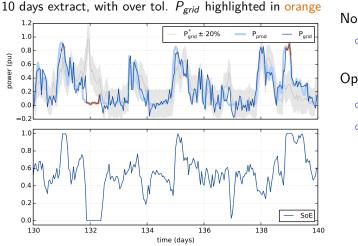
The ESS control is simulated with a 132 MW wind farm from NREL "Eastern Wind Dataset" (publicly available):

- $\circ\,$ 3 years of production/forecast data, with a 1 hour timestep.
- mean production of the farm: 0.343 pu
- RMS forecast error: $\sigma_P = 0.195 \text{ pu}.$

Validation test case

Input data for the simulation:

The ESS control is simulated with a 132 MW wind farm from NREL "Eastern Wind Dataset" (publicly available):

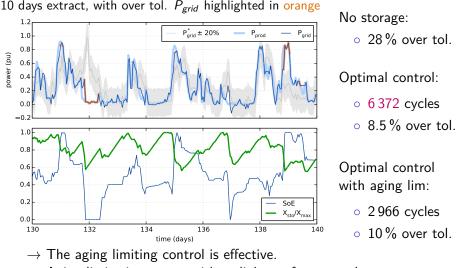

- $\circ~$ 3 years of production/forecast data, with a 1 hour timestep.
- o mean production of the farm: 0.343 pu
- RMS forecast error: $\sigma_P = 0.195 \text{ pu}.$

Penalty for commitment errors:

The tolerance for the deviation penalty is set at 0.2 pu

Simulation results

No storage:

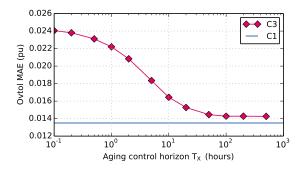

 $\circ~28\,\%$ over tol.

Optimal control:

• 6 372 cycles

• 8.5% over tol.

Simulation results



 \rightarrow Aging limitation comes with a slight performance drop.

Choosing the Aging Control Horizon

Our aging limiting control is based on a buffer of "exchangeable energy" X_{sto} . The buffer size (X_{max}) needs to be hand-picked.

Effect of the "aging control horizon" ($T_X = X_{max}/P_{exch}$)

 \rightarrow an horizon of 2-3 days is enough (for this example).

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Contribution

A formulation of cycling aging which fits naturally in the ESS control optimization.

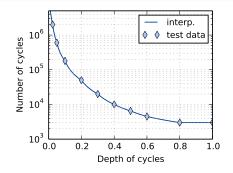
Validated in a simulation with an open dataset.

Contribution

A formulation of cycling aging which fits naturally in the ESS control optimization.

Validated in a simulation with an open dataset.

Going further


Adapt the method to also deal with calendar aging.

(calendar aging often depends on operational conditions like SoE, in particular for super capacitors)

Bonuses

- Lithium-ion aging curve
- A similar approach for calendar aging ?
- Aging as a constraint vs. as a penalty ?

Lithium-ion aging curve

Aging curve of a Lithium-ion NCA battery by SAFT (Lippert, 2010):

- 3000 cycles at full discharge depth.
- many more small cycles (180k at 10%)

Relation to the "energy counting" model used in this work assumption $N_{cycles} \propto 1/DoD$ (conservative)

A similar approach for calendar aging ?

Similar ideas could lead to a reformulation of the calendar aging. However, there is one extra difficulty:

- calendar aging depends on the state (T, SoE) instead of just the control variable (P_{sto})
- so I'm not sure it is possible to get an always feasible constraint on the control.

Aging as a constraint vs. as a penalty ?

Option 1: penalize cycling with its *real levelized cost*: can be over overwhelming!

Option 2: tunable penalty \rightarrow burden of parameter tuning for the control designer.

Aging as a constraint vs. as a penalty ?

Option 1: penalize cycling with its *real levelized cost*: can be over overwhelming!

Option 2: tunable penalty \rightarrow burden of parameter tuning for the control designer.

Argument against penalizing aging:

- 1. once operation starts, the battery is already paid
- 2. calendar aging will kill the battery anyway
- 3. so this is my claim: the marginal cost of cycling *within the allowed cycling bound* is zero.
- \rightarrow use instead a constraint on maximum number of cycles.